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A B S T R A C T

IPv6 target generation is critical in fast IPv6 scanning for Internet-wide surveys and cybersecurity analysis.
However, existing techniques generally suffer from low hit rates because the targets are generated from
inappropriate address patterns. To address the problem, we propose 6Graph, a graph-theoretic method for IPv6
address pattern mining. It first divides the IPv6 address space into different regions according to the structural
information of a set of known addresses. Then, 6Graph maps the addresses of each region into undirected
graphs and conducts the density-based graph cutting for address clustering to mine IPv6 address patterns
and detect the misclassified addresses iteratively. Besides, we exploit the random IPv6 target generation
based on Hamming distance without additional and complicated target selection. Experiments on 11 large-
scale candidate datasets show that the address patterns of 6Graph have a higher seed density than the
existing methods. Further results over real-world networks indicate that 6Graph can achieve 12.6%–35.8%
hit rates on the candidate datasets, which is an 8.8%–275.0% improvement over the state-of-the-art methods
in Internet-wide scanning.
1. Introduction

The Internet Assigned Numbers Authority (IANA) allocated the
last blocks of IPv4 address space to the Regional Internet Registries
(RIRs) in early 2011 [1]. IPv6, the next-generation Internet Protocol,
is widely implemented and rapidly adopted in recent years due to
strong demand. In October 2020, nearly 35% of Google users accessed
their services via IPv6 [2]. Meanwhile, the number of active IPv6 BGP
entries in the routing table is also increasing rapidly [3]. The Internet
is moving unavoidably towards IPv6.

Even with its advantages, IPv6 also raises new challenges for ef-
fective network management, especially efficient Internet-wide scan-
ning, which is essential to investigate the Internet for ISPs and re-
searchers [4]. For traditional IPv4 networks, asynchronous scanning
tools like ZMap [5] and Masscan [6] have drastically enhanced our
capability of Internet-wide network surveys, including topology discov-
ery [7,8], IP address analysis [9,10], and geolocation [11]. Meanwhile,
network device search engines like Shodan [12] and Censys [13] can
acquire Internet-wide asset data for evaluating network security, dis-
covering vulnerabilities, and tracking remediations [14]. Nevertheless,
these tools are not effective when applied for IPv6-based Internet
because of IPv6’s vast address space. Intuitively, based on the current
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brute-force approach, it would take tens of millions of years to render
comprehensive scans of the IPv6 address space. How to evaluate the
network assets and the status quo of usage on IPv6-based networks
is the urgent concern of ISPs [15,16]. Besides, the researcher needs
an effective method to obtain worldwide network measurements for
IPv6 [17].

To this end, IPv6 target generation methods are designed and
utilized as a universal method for efficient IPv6 scanning. By charac-
terizing and modeling the structure of seed address space with a set of
known addresses (i.e., address pattern mining), it can generate candi-
date addresses that may have a higher probability to be active [18],
so as to reducing the probing scope and significantly accelerating the
scanning. Yet, existing IPv6 target generation techniques commonly
face the misclassified address challenge during address pattern min-
ing, even for the newly invented methods 6Hit [19] and 6Tree [20].
Technically, they both consider the IPv6 address as a 32-dimensional
vector in the address space and then conduct the space partition
sequentially to construct the ‘‘space tree’’, a.k.a., divisive hierarchical
clustering (DHC). During the ‘‘space tree’’ spanning, the misclassified
address challenge happens frequently and will mislead the subsequent
space partition. As shown in the running example in Fig. 1, Nos.
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Fig. 1. Naive space partition cannot cope with the misclassified seeds (gray background) and cause the inflation of scanning scope, a.k.a., scanning space.
0,1,2,3 address vectors are classified into one subtree (No. 1 address
region), while Nos. 4,5,6 address vectors belong to another one (No. 2
address region). However, the misclassified address vector (i.e., Nos.
2,5 address vectors) are divided into wrong address regions because
they cause many unassigned dimensions (*) and such vast scanning
scope, which results in the waste of scanning budgets and a low hit
rate of about 11.5% [19]. In other words, if we could remove those
misclassified addresses (outliers) in advance, the scanning scope will
be reduced to a narrow range and the probing budgets will be used
efficiently. However, automatic outlier detection in address regions is
still an open problem.

We are thus motivated to propose 6Graph,1 a graph theoretic IPv6
address pattern mining method that is integrated with the clustering
for unsupervised outlier detection and the density-based graph cutting
algorithm. In this work, 6Graph uses the sets of known IPv6 addresses,
also called seeds, for address pattern mining and efficient target gener-
ation. Following the convention, 6Graph first considers IPv6 addresses
as high-dimensional vectors in the address space and performs an
enhanced divisive hierarchical clustering [21] on the given seeds for
the partition of the address space. In detail, 6Graph adopts a Breadth-
First Search strategy to improve efficiency. Then, 6Graph maps the IPv6
seeds of a region into an undirected graph without the edges after the
space partition and recursively adds the current shortest edge when
the two vertices are not reachable to each other and the density of
the graph would increase. Meanwhile, those connected components of
the graph including only one seed are not rare and their unique seeds
are just the misclassified seeds, i.e., outliers. Finally, those outliers
generated from the iterative graph cutting will be used as the seeds
for the next round space partition. More details of IPv6 address pattern
mining will be presented in Section 4.3.

To demonstrate the wide application scenarios of the address pat-
terns, we employ 11 large-scale candidate datasets and exploit a simple
targeted IP generation based on Hamming distance to evaluate the
performance (i.e., hit rate). The results show that 6Graph outperforms
the state-of-the-art methods in Internet-wide scanning.

The main contributions of the paper are as follows:

• We present 6Graph, a graph-theoretic IPv6 address pattern min-
ing approach for IPv6 target generation. To the best of our
knowledge, 6Graph is the first to apply the unsupervised outlier
detection to IPv6 address pattern mining.

• Based on 6Graph’s fine-grained address patterns, we adopt a
simple-yet-effective distance-based target generation method to
realize efficient IPv6 scanning.

1 Code is available at https://github.com/Lab-ANT/6Graph.git.
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• Real network experimental results on all the large-scale datasets
show that 6Graph achieves 12.6%–27.7% hit rate, which is an
8.8%–275.0% improvement over the state-of-the-art methods in
Internet-wide scanning.

2. Related work

2.1. IPv6 target generation

IPv6 target generation using seeds is first studied by
Barnes et al. [22] in 2012. They assume that the known active addresses
provide information on the use of addressing schemes. Subsequent
researches on target generation are all based on this hypothesis, that
is, the seed information is helpful in discovering more new addresses.
So far, related research has exploited both the semantic information
and the structural information in the seeds. Accordingly, related efforts
can be classified into two categories: semantic information-based and
structural information-based.

In the information-based methods, such as 6GCVAE [23], 6Ve-
cLM [24] and 6Gan [25], the seeds are firstly converted to the vectors
according to the IPv6 vector space mapping technology (i.e., IPv62Vec).
After the IPv62Vec, the vector datasets will be used to train the deep
neural network (e.g., Transformer, Variational Autoencoder, and Gen-
erative Adversarial Network). Furthermore, each nibble in the IPv6
addresses and its location will be regarded as a word, and an IPv6 ad-
dress will be constructed as a sentence. IPv6 target generation problems
are converted to the solved text generation problems. However, the
huge computing cost of deep neural networks means that these methods
cannot scale to large-scale scanning.

For the second class, the structural information of seeds is mainly
used to determine the scanning area or to guide the target gener-
ation. Foremski et al. [26] introduce Entropy/IP, an algorithm for
learning patterns from seeds, which utilizes empirical entropy to group
adjacent nibbles of IPv6 addresses into segments and uses Bayesian
network to model the statistical dependencies between values of dif-
ferent segments. This learned statistical model is used to generate
target addresses for scanning. Murdock et al. [27] propose 6Gen, which
assumes that the address space with high-density seeds is more likely
to have undiscovered active addresses. 6Gen greedily expands each
seed as a center of each cluster to generate the target addresses by
maintaining the maximal seed density and the minimal scale. Liu
et al. [20] propose 6Tree, which takes advantage of a space tree formed
from seeds’ structure to divide the IPv6 address space. 6Tree calculates
the density of active nodes on the space tree according to the known
active addresses that are loaded on the node. It then generates target
addresses based on the density of active nodes. Hou et al. [19] propose

https://github.com/Lab-ANT/6Graph.git
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6Hit and first apply reinforcement learning approach to IPv6 active
scanning. 6Hit dynamically allocates the budget according to the re-
ward of the scanning on each region. Through feedback, 6Hit optimizes
the subsequent search direction to high-density regions. However, the
experiments show that the prior works can only achieve an 11.5% hit
rate in large-scale scanning in the literature [19].

Considering that the semantic information-based model can hardly
cope with large-scale IPv6 scanning and its interpretability challenges,
we refer to the structural information of seeds to generate the targets.
The main drawback of this type of method is the relatively low hit
rate in large-scale scanning. To this end, this work is dedicated to
pushing this limit and mining appropriate space partition (i.e., address
patterns).

2.2. IPv6 address patterns

For such vast address space, the rule-based allocation of IPv6 active
addresses is necessary. Related works illustrate that the IPv6 active ad-
dresses in the one domain follow the common IPv6 addressing schemes,
i.e., address patterns [28].

An IPv6 address consists of a global routing prefix, a local subnet
identifier, and an interface identifier (IID) [28]. While the global rout-
ing prefix and the local subnet identifier are usually assigned by the
ISPs, the IID could be categorized into the following patterns [29]:

• Embedded-IPv4. The low bytes of the IID embeds the IPv4 ad-
dress of the network interface. For instance, c0:a8:2:a or
192:168:2:10 could embed an IPv4 address 192.168.2.10.

• Embedded-Port. The low bytes of the IID embeds the service
ports. For instance, 0:0:0:80 or 0:0:0:50 could embed decimal or
hexadecimal port 80 for HTTP services.

• IEEE-derived. The IID embeds the Ethernet address and the
inserted word ‘‘fffe’’ as so-called the Organizationally Unique
Identifier [30] and then flips the U/L (7th) bit. For instance,
0250:56ff:fe89:49be could embed the MAC address
00:50:56:89:49:be.

• Pattern-bytes. The IIDs of a set of IPv6 have the common pre-
fix or pattern and only differ on several nibbles. However, the
different nibbles are not always in the low bytes. For instance,
face:b00c:3333:1b26 and face:b00c:3333:2c45 have the common
bytes,
face:b00c:3333.

• Randomized. For users’ privacy, the IID keeps a pseudoran-
dom representation according to the privacy extensions for IPv6
SLAAC [30,31].

Besides, previous research [22] has shown that the allocation of
both the IIDs, the global routing prefixes, and the local subnet identi-
fiers follow certain rules (e.g., 2a02:6d40:30c4:7000::1 and
2a02:6d40:30c2:8000::1), and the seeds 𝐶 can indicate the information
on the use of addressing schemes. In other words, those address
patterns are the key to IPv6 target generation. However, the prior
methods can hardly figure out this problem.

3. Preliminaries

3.1. Definitions

We define some necessary metrics in advance.

Definition 1. IPv6 address vectors. A 128-bit IPv6 address whose
binary integer is 𝑁 can be converted to a 32-dimensional vector 𝑣, each
dimension of which is a hexadecimal integer, and the 𝛿 dimension can
be present as follows:

𝑣[𝛿] = (𝑁 ≫ (128 − 4𝛿)) 0𝑥𝑓, 𝛿 = 1, 2,… , 32 (1)
3

Fig. 2. A seed region example. Note that the 15𝑡ℎ, 16𝑡ℎ dimensions are the free
dimensions and the others are the fixed dimensions.

Fig. 3. The examples of distances including IPv6 seeds and seed regions.

Fig. 4. An outlier example for a given address region.

Definition 2. Free dimensions and fixed dimensions. After IPv6 space
partition, the generated regions consist of a set of seeds, which have the
same values on the fixed dimensions and differ on the free dimensions.
Following the convention, we use the wildcard symbol ‘‘*’’ to denote
an uncertain nibble (i.e., free dimension) (see Fig. 2).

Definition 3. Scanning space. Obviously, the maximum number of
generated IPv6 targets are based on 𝜉 the size of given region’s free
dimensions and equal to 16𝜉 .

Definition 4. Seed regions and address patterns. The seed regions are
the subsets of the candidate datasets after the IPv6 space partition.
Then, 6Graph mines the address patterns based on the graph cutting
algorithm, and the address patterns should meet the characteristics
described in Section 2.2 and have rare free dimensions to guarantee
high-density scanning space.

Definition 5. Seed density. For a seed region or address pattern with
𝜉 size of free dimensions and the seed set 𝐶, the corresponding density
is

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =

{

𝐶.𝑠𝑖𝑧𝑒()
𝜉 , 𝐶.𝑠𝑖𝑧𝑒() > 1

0, 𝐶.𝑠𝑖𝑧𝑒() == 1
(2)

Additionally, the region consisting of only a seed is considered as the
outlier and its density is zero for calculation.

Definition 6. Distance. Without loss of generality, the distance
can evaluate the similarity metric between regions, region and IPv6
address vector, or IPv6 address vectors. 6Graph adopts the Hamming
distance [32] between the nybble-level representation of addresses and
regions. And the distance between the wildcard ‘‘*’’ and any values is
zero (see Fig. 3).

Definition 7. Outlier seeds. In a given address region, those seeds
having unique address patterns will be regarded as the outliers (see
Fig. 4).
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Fig. 5. The workflow of 6Graph.

3.2. Problem statement

An active IPv6 address should meet the following requirements,
namely alive host, Internet access, and probe response. If a scanner
sends packets following a certain protocol to a target address and the
target responds, we consider the target address to be active under this
protocol. Without loss of generality, we assume that the scanner sends
probing packets following the same protocol type, and the set of all
active addresses under this protocol in the address space 𝑋 is 𝐴. Seeds
𝐶 is a set of known active IPv6 addresses in the address space 𝑋, which
can usually be collected from network traffic, DNS records, and existing
IPv6 scanning methods. Considering the target generation algorithm 𝜏
with the given probing budget 𝑏, this problem is stated as follows:

max 𝜏(𝐶, 𝑏)

𝑠.𝑡. 𝜏(𝐶, 𝑏) ⊂ 𝐴, 𝐶 ⊂ 𝑋, 𝜏(𝐶, 𝑏) ∩ 𝐶 = ∅
(3)

4. Design of 6Graph

We first present the system overview of 6Graph and then describe
the details of its key technical components: space partition, graph-
theoretic pattern mining, and distance-based target generation.

4.1. System overview

Fig. 5 illustrates the main workflow of 6Graph. It first samples the
IPv6 datasets to generate multi-size seed sets. Then it conducts the
space partition of the entire IPv6 address 𝑋 on the seeds of candidate
seed sets. 6Graph exploits the graph-theoretic algorithm to mine the
address patterns from the seed regions while the misclassified seeds
(outliers) in the seed regions will be removed. Meanwhile, some outliers
will be attached to their zero-distance address patterns, i.e., seed rejoin-
ing, while others will be used as the new seed sets for the next round.
Finally, efficient IPv6 target generation and scanning are conducted and
based on the address patterns.

4.2. Space partition

The partition of the address space 𝑋 in existing methods [19,20] is
realized by recursively utilizing the divisive hierarchical clustering [21]
algorithm to construct a tree structure namely ‘‘space tree’’, that means
the state-of-the-art methods will recursively divide the entire seed set
into some small clusters instead of clustering the single seeds into the
seed regions. However, there are two disadvantages to these methods:
(1) time-consuming space tree construction. Limited to the recursion
and the tree structure, parallel space partition is hardly able to im-
plement. (2) unnecessary storage. the existing methods adopt a Depth
First Search strategy to recursively find the leaf nodes of the space tree.
Meanwhile, the allocated regions of a child node only depend on its
parent node, instead of its ancestor node. Accordingly, the preservation
of the entire space tree will cause huge storage usage.
4

Algorithm 1 Space Partition
Require: the set of seeds 𝐶, the seed number threshold 𝛽
Ensure: address regions 𝐴𝑆
1: 𝑟𝑜𝑜𝑡 = 𝐶,𝑁𝑄 = 𝑄𝑢𝑒𝑢𝑒(), 𝐴𝑆 = ∅
2: 𝑁𝑄.𝑝𝑢𝑡(𝑟𝑜𝑜𝑡)
3: while not 𝑁𝑄.𝑒𝑚𝑝𝑡𝑦() do
4: 𝑐𝑢𝑟 = 𝑁𝑄.get() ⊳ FIFO Queue for Breadth-First Search.
5: if 𝑐𝑢𝑟.size() ≤ 𝛽 then
6: 𝐴𝑆.𝑎𝑑𝑑(𝑐𝑢𝑟)
7: continue
8: end if
9: 𝑠𝑝𝑙𝑖𝑡𝑠 = leftmost(𝑐𝑢𝑟) ⊳ Split the current seeds on the leftmost

free dimension.
10: for 𝑠 ∈ 𝑠𝑝𝑙𝑖𝑡𝑠 do
11: 𝑁𝑄.𝑝𝑢𝑡(𝑠)
12: end for⊳ Split out subsequences of the assigned seeds on node

where the seed vectors have the same value.
13: end while
14: return 𝐴𝑆
15:
16: function leftmost(𝑆𝑒𝑒𝑑𝑠)
17: for 𝛿 = 1 → 32 do
18: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = 𝐿𝑖𝑠𝑡()
19: for 𝑠 ∈ 𝑆𝑒𝑒𝑑𝑠 do
20: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠[𝑠[𝛿]].𝑎𝑑𝑑(𝑠)
21: end for
22: if 𝑙𝑒𝑛(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠) > 1 then
23: break ⊳ There are different nibbles on the 𝛿𝑡ℎ

dimension (leftmost).
24: end if
25: end for
26: return 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠
27: end function

To this end, we exploit the Breadth-First Search strategy and a
FIFO structure rather than the tree structure to generate target address
regions. The pseudocode is shown in Algorithm 1. 6Graph first takes
the node from the FIFO structure and the leftmost free dimension
will be the splitting indicator. According to the values on the splitting
indicators, the seeds of the current node will be associated with the
corresponding child nodes which will be pushed in the FIFO structure.

Fig. 6 shows an example of building a space tree with a candidate
dataset of seeds. The final tree contains 144 nodes in total, but we
only draw some of the nodes for a clear illustration. The leaf nodes
correspond to the seed regions defined in Definition 4 and the non-
leaf nodes would be reserved in tree structures [19,20] while 6Graph
exploits the FIFO structure and discards the interim nodes to reduce
storage usage. Besides, the FIFO structure in 6Graph can be shared by
multiple CPUs (i.e., resource pooling).

It is worth highlighting that the non-leaf nodes (seed regions) are
not always perfect after the space partition. For example, Node 6 only
includes one seed that should be added to the set of outlier seeds and
those outlier seeds mislead the subsequent space partition which results
in the vast scanning space (e.g., the first and last seeds in Node 120).
The problem will be solved in Section 4.3.

Complexity analysis: Let 𝑚 be the number of input seed addresses.
The algorithm first sorts the 𝑚 seeds, which have the worst-case time
complexity of 𝑂(𝑚𝑙𝑜𝑔𝑚). Then, the space partition will traverse each ad-
dress vector once per dimension which will be not beyond 𝑂(32 𝑚) time
consumption totally and the worst-case time complexity is 𝑂(𝑚𝑙𝑜𝑔𝑚).
Besides, 6Graph will only retain the entire seeds once and not reserve
the interim nodes during space partition which reduces the space
complexity to 𝑂(𝑚) while existing methods [19,20] need to keep the
entire tree structure and their worst-case space complexity is 𝑂(𝑚𝑙𝑜𝑔𝑚).
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Fig. 6. The instance of space partition, which generates 144 nodes and 24 seed regions with 19 outlier seeds from 500 seeds.
4.3. Graph-theoretic pattern mining

After space partition, 6Graph will not allocate the scanning bud-
gets directly according to the seed regions from inappropriate space
partition which results in a low hit rate. As explained above, the
problem of space partition is the interference of the outlier seeds. Thus,
6Graph adopts the graph-theoretic pattern mining algorithm to remove
misclassified seeds and divide the seed regions into address patterns.

We restate the problem for clarity: the pattern mining aims to find
the real IPv6 address patterns defined in Section 2.2 whose inputs are
the inappropriate seed regions and outputs are the address patterns
with the detected outlier seeds. The pseudocode of pattern mining is
shown in Algorithm 2.

Given the seed region, 6Graph will evaluate the distances between
all the seeds according to the Definition 6. It will sort the distances
list and remove the duplicates and the overlong edges. Then, 6Graph
constructs an undirected graph 𝐺 = (𝑉 ,𝐸) whose vertices are the seeds
without edges. In the order of the sorted distance list, the edges will be
added to the graph 𝐺 when the related two vertices cannot be reachable
for each one. To the end, the graph becomes connected, called the
minimum spanning tree (MST).

Algorithm 2 Pattern Mining
Require: the given seed region 𝑋, the free dimension threshold 𝛼
Ensure: address patterns 𝑃𝑆, outlier seeds 𝑂𝑆
1: 𝑃𝑆 = ∅, 𝑂𝑆 = ∅
2: 𝑑𝑖𝑠 = []
3: for ∀𝑖, 𝑗 ∈ 𝑋.𝑠𝑒𝑒𝑑𝑠, 𝑖 ≠ 𝑗 do
4: if distance(𝑖, 𝑗) ≤ 𝛼 then
5: 𝑑𝑖𝑠.append((distance(𝑖, 𝑗), 𝑖, 𝑗))
6: end if
7: end for
8: sort(𝑑𝑖𝑠)
9: 𝐺 = Graph()

10: 𝐺.𝑉 .from(𝑋.𝑠𝑒𝑒𝑑𝑠)
11: for 𝑑, 𝑖, 𝑗 ∈ 𝑑𝑖𝑠 do
12: if 𝑖 is reachable for 𝑗 in 𝐺 then
13: continue
14: end if
15: 𝑠𝑔1 = 𝐺.𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑖)
16: 𝑠𝑔2 = 𝐺.𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑗)
5

17: 𝑠𝑔𝐷𝑒𝑛𝑠𝑖𝑡𝑦1 = density(𝑠𝑔1)
18: 𝑠𝑔𝐷𝑒𝑛𝑠𝑖𝑡𝑦2 = density(𝑠𝑔2)
19: 𝜌 = density(𝑠𝑔1 ∪ 𝑠𝑔2)
20: if 𝑠𝑔𝐷𝑒𝑛𝑠𝑖𝑡𝑦1 < 𝜌 and 𝑠𝑔𝐷𝑒𝑛𝑠𝑖𝑡𝑦2 < 𝜌 then
21: 𝐺.𝐸.add(𝑖, 𝑗, length=𝑑)
22: end if
23: end for⊳ The minimum spanning tree clustering based on Kruskal

algorithm.
24: for 𝐶𝐶 ∈ 𝐺.𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠() do
25: if len(𝐶𝐶.𝑠𝑒𝑒𝑑𝑠)>1 then
26: 𝑃𝑆.𝑎𝑑𝑑(𝐶𝐶.𝑠𝑒𝑒𝑑𝑠)
27: else
28: 𝑂𝑆.𝑎𝑑𝑑(𝐶𝐶.𝑠𝑒𝑒𝑑𝑠)
29: end if
30: end for
31: return 𝑃𝑆,𝑂𝑆
32:
33: function density(𝐺)
34: if G.seeds.size()==1 then
35: return 0
36: else
37: return 𝐺.𝑠𝑒𝑒𝑑𝑠.𝑠𝑖𝑧𝑒()

𝐺.𝑓𝑟𝑒𝑒𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠.𝑠𝑖𝑧𝑒()
38: end if
39: end function

During the tree spanning above, 6Graph would evaluate whether
those edges could be added to the graph. In short, graph-theoretic
pattern mining aims to maximize the density of a vertex set where the
vertices can reach each other, a.k.a, connected components.

For two vertices (𝑖 and 𝑗) of the current shortest edge, 6Graph
calculates the density (see Section 3.1) of the vertices 𝑖, 𝑗 corresponding
connected components and their union cluster. Then, 6Graph recur-
sively traverses all the candidate edges for the graph spanning and
connects the vertices only when the density after the seed aggregation
above increases.

After the graph spanning above, the entire undirected graph will be
divided into several subgraphs according to its connected components,
i.e., graph cutting. After graph cutting, there are some subgraphs
including only single seeds which are the detected outliers because
those seeds are far away from others (see Section 3.1) and a single
seed without free dimension cannot represent an IPv6 address space
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Fig. 7. The instance of density-based graph cutting for address pattern mining from the
given seed region, where the edge distance is the number of free dimensions between
two nodes.

for the new target generation. On the other hand, those non-isolated
seed clusters in other subgraphs will be regarded as the IPv6 address
patterns.

As shown in Fig. 7, the algorithm can dig out the real address
patterns and detect two outliers from the given seed region. Note that
the edge is the number of free dimensions between two nodes, i.e., the
distance defined in Section 3.1. Obviously, the address pattern can meet
the requirements in Section 2.2 and the entire scanning space of all of
them reduce to 2.0 × 10−7 of that of the given seed region.

After pattern mining, the outliers will be used as the input for the
new round of space partition.

Complexity analysis: Let 𝑛 be the number of seeds in a given seed
region. The algorithm first calculates the distances between all seeds
and sorts the distances list, which has the worst-case time complexity
of 𝑂(𝑛2𝑙𝑜𝑔𝑛). Then, it constructs a ‘‘minimum spanning tree’’ and the
maximum number of edges is below 𝑂(𝑛) and time consumption is not
beyond 𝑂(𝑛2). Note that the number of seeds 𝑛 of the given seed region
is much smaller than the entire seeds’ 𝑚. We assume that there are 𝑚

𝑛
egions from the entire set of 𝑚 seeds whose average number of seeds
s 𝑛. The total pattern mining time complexity of the entire seeds is
(𝑚𝑛𝑙𝑜𝑔𝑛), 𝑛 ≪ 𝑚.

emark 1. The graph-theoretic pattern mining algorithm is an en-
anced minimum spanning trees (MST) clustering, whose correctness
as been declared in related literature [33,34]. Compared with the MST
lustering where the dissimilarity threshold value needs to be defined
priori, 6Graph circumvents this disadvantage and generates the new
luster based on the density increase of seed region instead of empirical
nd weakly interpretable dissimilarity threshold. Similarly, K-means or
BSCAN clustering methods which require the pre-set hyperparameters
re also not convincing and able to be adopted for outlier seed detection
nd pattern mining.
6

s

ig. 8. The instance of distance-based target generation where the gray nibbles
epresent one Hamming distance.

.4. Distance-based target generation

Benefiting from the more fine-grained address patterns than the ex-
sting methods and considering the efficiency of IPv6 target generation,
e exploit a simple distance-based target generation algorithm.

The basic institution is that the distances between active IPv6
ddresses should be tiny in the same address patterns. In other words,
Graph only considers the targets which are only one Hamming dis-
ance from the given seeds.

As shown in Fig. 8, the seed 2001028822011000000000-000000068
ith three free dimensions could generate about 45 IPv6 targets after

iltering out the known seeds. Additionally, the set of known seeds
ncludes not only the active seeds but also the known inactive IPv6
ddresses from scanning results to avoid repeated scanning and bud-
et waste. After the target generation, the candidate targets will be
andomly sampled as targets for IPv6 scanning rather than all the
andidates according to the allocated budgets of this pattern on this
ound. Considering the deepening of the seed space cognition of an
ddress pattern, we dynamically increase the budget allocated for
his pattern on the next round. Assuming that the number of known
ddresses including the active and the scanned inactive addresses on
he pattern 𝑃𝑗 in 𝑡𝑡ℎ iteration is 𝑘 and the 𝐶𝑗 ⊆ 𝐶 is the set of initial
eeds of 𝑃𝑗 , the number of allocated budgets in next iteration are equal
o 𝑘𝑡+1:

𝑡+1 =
𝑡

∑

𝑖=1
𝑘𝑖, 𝑘1 = 𝐶𝑗 .𝑠𝑖𝑧𝑒() (4)

We cannot deny that the target generation is rough and simple
ompared with the existing methods [19,20]. However, 6Graph focuses
n address pattern mining and the high hit rate of IPv6 scanning is
ust the result of appropriate space partition. Thus, to avoid wrongly
ttributed to our pattern mining algorithm, we exploit the simple
istance-based target generation method for fairness.

. Performance evaluation

We compare the performance of 6Graph and other existing methods,
ncluding 6Hit [19], 6Tree [20], 6Gen [27] and Entropy/IP [26], with
eal-world test. Excluding 6Gan [25] from the baselines is mainly due
o the unavailability of its source code.

.1. Dataset description

Gasser et al. [35] have collected active IPv6 addresses from multiple
ources, as shown in Table 1. We used the data published on Jan. 4th,
021 as the sorted active address set 𝐶, including 4.9 M detected IPv6
ddresses.

To investigate the impact of initial seed on the performance of
ifferent methods in a real-world test, we adopt three strategies to form
eed sets from 𝐶: downsampling, biased sampling, and prefix-based
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Table 1
Main sources of public active address set.

Main sources Nature

Alexa top websites [36] Servers
Statvoo websites [37] Servers
Cisco Umbrella websites [38] Servers
Zone files for several top-level domains [39] Servers
CAIDA IPv6 DNS names data [40] Servers
TLS certificates in certificate transparency logs Servers
Rapid7 FDNS ANY dataset [41] Servers
RIPE Atlas dataset [42] Routers

Address range : 2001:200::1 − 2c0f:ffc8:4001:4::2
otal number of active addresses ≈ 4.9𝑀 .

able 2
haracteristics of seed sets.
Seed set Number Selection strategy Covering Range

𝐶1 5𝐾 Down sampling 4.9𝑀 2001:200:16a:24::102 ∼
2c0f:feb0:1:2::49d

𝐶2 30𝐾 Down sampling 4.9𝑀 2001:200:0:1cd1::13 ∼
2c0f:feb0:1:2::7f1

𝐶3 0.1𝑀 Down sampling 4.9𝑀 2001:200:0:1::3 ∼
2c0f:ff40:1:1012

𝐶4 5𝐾 Biased sampling 5𝐾 2001:200:0:1::1 ∼
2001:12ff:0:7000::6

𝐶5 30𝐾 Biased sampling 30𝐾 2001:200:0:1::1 ∼
2001:1348:1:7::6

𝐶6 0.1𝑀 Biased sampling 0.1𝑀 2001:200:0:1::1 ∼
2c0f:fef8:0:102f::2

𝐶7 2.5𝑀 Biased sampling 2.5𝑀 2001:200:0:1::1 ∼
240e:38b:86c4:6d01::

𝐶8 2.5𝑀 Biased sampling 2.5𝑀 240e:38b:86ff:1f01:: ∼
2c0f:ffc8:4001:4::2

𝐶9 5𝐾 Prefix-based sampling 4.9𝑀 2001:12f0:700:20::67 ∼
2c0f:fef8::e2e:1b

𝐶10 30𝐾 Prefix-based sampling 4.9𝑀 2001:1218:6009::1 ∼
2c0f:ff48::8

𝐶11 0.1𝑀 Prefix-based sampling 4.9𝑀 2001:1218:6009::1 ∼
2c0f:ff98::1

sampling. In downsampling, we randomly sample a certain number of
addresses from 𝐶 as seed set 𝐶𝑖, 𝑖 ∈ {1, 2, 3}. In biased sampling, we
order the addresses in 𝐶 and then extract a certain number of adjacent
addresses as seed set 𝐶𝑖, 𝑖 ∈ {4, 5, 6}. And, we utilize the entire IPv6
dataset for evaluation and split it into two 2.5M seed sets 𝐶𝑖, 𝑖 ∈ {7, 8}.
In prefix-based sampling, we extract 278K IPv6 /48 prefixes totally
from the entire dataset and respectively sample the seeds of 2000,
12000, 40000 random prefixes as seed set 𝐶𝑖, 𝑖 ∈ {9, 10, 11}. More
details of these seed sets are shown in Table 2.

5.2. Real-world test results

We conducted the Internet-wide scanning experiments in January
2021 and limited the probing rate to 20 million bps for strictly ensuring
Internet citizenship as suggested by Partridge and Allman [43]. The
experiments including performance evaluation of 6Graph and existing
methods were performed at the Hangzhou data center of Alibaba Cloud
(AS37963). An IPv6 single-threaded address scanner using ICMPv6,
TCP, and UDP was deployed on a Linux platform with an Intel Platinum
8260 Processor (2.50 GHz, 4 core) and 8 GB RAM.

In the real-world tests, we mainly adopt the scanner using ICMPv6
probes for performance evaluation of 6Graph and the baselines. Ad-
ditionally, we also exploit the scanner using TCP/UDP probes to scan
some common ports on the Internet (e.g., 22, 53, 80, and 443) shown
in Table 6, because it is impossible to probe every port of an IPv6
address. More details of ICMPv6 and TCP/UDP scanning are shown in
Section 5.3.2

To ensure fairness, we conducted the preprocessing step (i.e., pat-
tern mining of 6Graph, space partition of 6Tree and 6Hit, seeds clus-
tering of 6Gen, seeds statistics of Entropy/IP) offline. This is due
7

to the following considerations: some methods (e.g., 6Gen and 6Hit)
require huge computing resources and the main challenge of IPv6 target
generation is the hit rate of large-scale scanning. Even with the offline
preparation, some methods still failed to cope with the large size seed
sets within the reasonable time limit. Therefore, only 6Tree [20] and
Entropy/IP [26] could be adopted as the baseline on the seed sets
𝐶𝑖, 𝑖 ∈ {7, 8}.

5.2.1. Size of scanning space
As shown in Fig. 12, 6Graph successfully reduced the entire scan-

ning space by several orders of magnitude and could generate a larger
number of fine-grained address patterns with high density, which can
account for the high performance of 6Graph. Additionally, the experi-
ments and related work [19] show that the numbers of address patterns
(6Graph) on downsampling seed sets 𝐶𝑖, 𝑖 ∈ [1, 3] and prefix-based
sampling seed sets 𝐶𝑖, 𝑖 ∈ [9, 11] are less than that on the same size
biased sampling datasets 𝐶𝑖, 𝑖 ∈ [4, 8], which means the patterns from
downsampling datasets could be more effective.

5.2.2. Number of active addresses
On seed set 𝐶𝑖, 𝑖 ∈ [1, 11] introduced above, we used the active

address numbers detected by ICMPv6 probes to evaluate 6Graph and
the baselines. The results are shown in Figs. 13 and 15 where we can
see that the methods (i.e., 6Graph, 6Hit, and 6Tree) based on space
partition are usually higher than others. It is worth highlighting that
6Graph outperforms the state-of-the-art methods on all the datasets,
which demonstrates the powerful pattern mining ability of 6Graph.

5.2.3. Hit rate
Figs. 14 and 16 show the hit rate performance of 6Graph per

iteration using ICMPv6 probes on seed sets. We can see that in general
the hit rate of 6Graph is maintained at a higher level even though
there are some fluctuations. The orange dashed lines indicate the final
results of the 10M probes on the candidate datasets which achieve the
highest average hit rate beyond 35% in large-scale scanning (𝐶𝑖, 𝑖 ∈
{1, 2, 3, 9, 10, 11}) and also outperforms the existing methods on other
datasets (𝐶𝑖, 𝑖 ∈ [4, 8]) as shown in Table 4.

5.3. Address analysis

5.3.1. Seed biases and sampling strategy
Intuitively, 6Graph performs better on downsampling and prefix-

based sampling seed sets than on the biased sampling seed sets. The
underlying reason is that the downsampling and prefix-based sampling
seed sets contain the address patterns from the entire 4.9M seeds, while
the address patterns of the biased sampling seed sets are limited to a
significantly narrower range (e.g., 5k). Thus, the generated targets of
the poor ‘‘quality’’ seed sets (i.e., biased sampling) can only manage to
provide the low-level hit rates stably, while targets of the high ‘‘quality’’
seed sets (i.e., downsampling and prefix-based sampling) can achieve
outstanding performance and cause the hit-rate oscillation as shown in
Figs. 14 and 16.

Furthermore, we state that the sizes (> 5𝐾) of large seed sets have
no significant impact on the hit rates because only two seeds are enough
to determine a seed region. In other words, apart from a few omissions
of the potential address patterns, the sampling ranges (covering) are
more representative of the seed sets. Therefore, the performance indeed
depends more on the covering range (sampling) rather than on the size

of the seed set, which is consistent with the results.
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Fig. 9. The aliases of the discovered active addresses on the candidate datasets
𝐶𝑖 , 𝑖 ∈ [1, 11] and their aliased prefixes (partly plotted).

5.3.2. ICMPv6 vs TCP/UDP
The state-of-the-art methods [19,20] both exploit the ICMPv6 scan-

ner for performance evaluation and achieved good results. However,
there is still a technological gap in active IPv6 address exploration using
other protocols. To this end, we experimentally leverage the ICMPv6
and TCP/

UDP probes to scan the targets generated by 6Graph. Given the same
seeds and probing budgets, the 6Graph-based scanner using ICMPv6
probes could find far more active addresses than it using TCP/UDP
probes. In other words, the employment of a TCP/UDP scanner might
cause more false-negative results, which means the alive IPv6 hosts are
regarded as inactive.

As shown in Table 6, the TCP probes on the 80,443 port could
get the response than other TCP/UDP probes, because an IPv6 host
will usually respond to an ICMPv6 probe but only respond to the
TCP/UDP requests when it provides specific services on those ports
(e.g., 80 for HTTP, 443 for HTTPS and 53 for DNS). Furthermore,
we survey the response rates on the seed set 𝐶𝑖, 𝑖 ∈ [1, 11] using
different protocols. As shown in Table 7, ICMPv6 probes have the
8

Fig. 10. The numbers of the discovered active addresses and their categories on the
candidate datasets 𝐶𝑖 , 𝑖 ∈ [1, 11].

Fig. 11. The ASes of the discovered active addresses on candidate seed sets 𝐶𝑖 , 𝑖 ∈
[1, 11] (partly plotted).

highest response rates, which means more ICMPv6 active addresses will
be fed back to 6Graph’s next iteration and 6Graph can achieve better
performance using ICMPv6 probes, i.e., protocol biases. Therefore, it
takes a comprehensive method to render the status of IPv6 address
space accurately.

5.3.3. Number of seeds
As mentioned above, the number of seed sets (> 5𝐾) is negligible

for the performance evaluation. However, how low the number of the
seed sets can be used for target generation without performance loss is
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Fig. 12. The numbers of generated seed regions (patterns) and their entire scanning space (logarithmic scale).
Fig. 13. Discovery of active addresses using ICMPv6 probes with a budget of 10M on seed sets 𝐶𝑖 , 𝑖 ∈ [1, 6].
Table 3
The hit rates of 6Graph using ICMPv6 probes on different numbers of seed sets
(Including aliases).

Seed
Number

1K 2K 3K 4K 5K 30K 0.1M

Down
Sampling

5.66% 9.69% 14.16% 19.30% 27.03% 27.73% 25.78%

Biased
Sampling

2.07% 4.04% 6.11% 7.71% 12.66% 12.67% 19.47%

Prefix-based
Sampling

6.97% 11.25% 18.87% 23.78% 32.67% 34.05% 36.94%

still an open problem. We additionally adopt 12 small-scale seed sets
(i.e., 1K, 2K, 3K, and 4K) for 6Graph’s performance evaluation based on
downsampling, biased sampling, and prefix-based sampling strategies.
As shown in Table 3, the decremental number of seeds causes 6Graph’s
hit rates to decrease and 6Graph’s performance on the small seed sets
(1K) has decayed by about 80%. Therefore, the lowest number of seed
sets we exploit for tests is 5K.

5.3.4. Aliases
Prior works [16,27] propose that the alias is the non-negligible chal-

lenge for Internet-wide scanning and could result in the false positives
9

of active addresses. Following the existing methods [19,20], 6Graph
has removed the IPv6 aliases from results according to the known alias
prefixes [35] but does not ensure that there will be no unknown aliases
because IPv6 alias resolution is not within our work.

Furthermore, Table 5 and Fig. 9 demonstrate the discovered aliases
of the active addresses and their aliased prefixes2 on the candidate
seed sets 𝐶𝑖, 𝑖 ∈ [1, 11]. Note that there are a few aliases in the
results, which illustrates that IPv6 aliases will not have a significant
impact on the (hit rate) evaluation because Gasser et al. [35] have
discarded the aliases when the IPv6 seeds were collected. Additionally,
the aliases are concentrated in several aliased prefixes and only exist
on the results of the seed sets 𝐶𝑖, 𝑖 ∈ [4, 11] because the adjacent seeds
from biased sampling and prefix-based sampling usually have a more
narrow address range (covering) and are more similar to each other.
Therefore, 6Graph on biased sampling and prefix-based sampling seed
sets could generate the address regions that are located in the aliased
prefixes and generate the IPv6 targets with a high aliased rate. Even so,
6Graph still achieved the highest hit rates on all seed sets 𝐶𝑖, 𝑖 ∈ [1, 11]
after the alias removal.

2 Fully plotted at https://lab-ant.github.io/6GraphDataPlot/Aliases.html

https://lab-ant.github.io/6GraphDataPlot/Aliases.html
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𝐶

Fig. 14. The hit rate of 6Graph per iteration using ICMPv6 probes with a total budget of 10M. The orange dashed lines indicate the average hit rates on the given seed sets
𝑖 , 𝑖 ∈ [1, 6].
Fig. 15. Discovery of active addresses using ICMPv6 probes with a budget of 10M on seed sets 𝐶𝑖 , 𝑖 ∈ [9, 11].
5.3.5. Categories
Fig. 10 shows the categories of discovered active addresses. The

Low-byte, Pattern-bytes, and Randomized addresses are the main part
of test results due to two factors: 1) Those address patterns are widely
used for IPv6 address management on most domains. 2) Those address
patterns compared with other address patterns, are easier to mine and
explore. Besides, the EUI64 (IEEE-derived) addresses are relatively rare
and the efficient discovery of IPv6 addresses with specific patterns
(e.g., IEEE-derived) is still an open problem.

5.3.6. Ases
Fig. 11 demonstrates the autonomous systems (AS),3 into which we

map the discovered active addresses [44,45]. Intuitively, the diversity

3 Fully plotted at https://lab-ant.github.io/6GraphDataPlot/ASes.html
10
of autonomous systems is related to the size of the discovered IPv6
addresses with the same scanning budgets. For example, those results
of the seed set 𝐶𝑖, 𝑖 ∈ [6, 11] with higher hit rates are from more
ASes. As mentioned in Section 5.3.1, the wide sampling range of
seeds is significant for target generation. Empirically, those seed sets
𝐶𝑖, 𝑖 ∈ [6, 11] including diverse ASes and prefixes would outperform
the homogeneous seed sets (𝐶4, 𝐶5), which is consistent with the test
results.

In summary, large-scale scanning on the IPv6 Internet shows that
6Graph achieved 12.6%–35.0% hit rates for eight candidate datasets,
which is an 8.8%–275.0% improvement over the state-of-the-art meth-
ods.

6. Conclusion

In this work, we proposed 6Graph, an efficient address pattern
mining method for discovering active IPv6 addresses. 6Graph adopts

https://lab-ant.github.io/6GraphDataPlot/ASes.html
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𝐶

Fig. 16. The hit rate of 6Graph per iteration using ICMPv6 probes with a total budget of 10M. The orange dashed lines indicate the average hit rates on the given seed sets
𝑖 , 𝑖 ∈ [9, 11].
Table 4
Average hit rates of target generation algorithm using ICMPv6 probes with 10M budgets (Aliases removed).

Approach 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝐶7 𝐶8 𝐶9 𝐶10 𝐶11

Entropy/IP [26] 0.93% 1.56% 1.67% 0.54% 1.13% 1.27% 1.25% 6.57% 0.34% 0.36% 0.40%
6Gen [27] 5.13% 5.75% 6.48% 1.79% 2.03% 2.40% – – 3.35% 3.78% 4.22%
6Tree [20] 8.99% 9.88% 11.66% 2.18% 2.63% 3.19% 9.54% 9.49% 1.38% 4.55% 4.38%
6Hit [19] 10.47% 10.46% 12.66% 11.62% 9.14% 5.17% – – 7.86% 6.58% 5.98%
6Grapha 27.03% 27.73% 25.78% 12.64% 12.61% 19.41% 23.63% 21.16% 29.31% 27.75% 35.84%

aOur work.
Table 5
The discovered aliases of the active addresses using ICMPv6 probes.

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝐶7 𝐶8 𝐶9 𝐶10 𝐶11

Non-aliased 2.70M 2.77M 2.58M 1.26M 1.26M 1.94M 2.36M 2.12M 3.53M 3.45M 4.12M
Aliased – – – 1.74K 5.61K 5.94K 7.34K 21.38K 0.36M 0.64M 0.12M
Aliased rate – – – 0.13% 0.45% 0.31% 0.31% 0.99% 10.31% 18.52% 2.97%
Table 6
The hit rates of 6Graph using different protocols (Including aliases).

Protocols (Ports) 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝐶7 𝐶8 𝐶9 𝐶10 𝐶11

ICMPv6 27.03% 27.73% 25.78% 12.66% 12.67% 19.47% 23.70% 21.37% 32.67% 34.05% 36.94%
TCP(21) 0.33% 0.69% < 0.01% < 0.01% 0.04% 0.05% 0.16% 0.30% 0.14% 0.09% 0.79%
TCP(22) 1.46% 0.74% < 0.01% 1.99% 2.29% 6.16% 3.15% 0.11% 1.47% 1.28% 3.30%
TCP(80,443) 4.04% 5.34% 2.22% 0.02% 0.27% 7.18% 3.64% 2.02% 2.47% 1.66% 4.35%
UDP(25) 0 < 0.01% 0 0 < 0.01% < 0.01% < 0.01% 0 0 < 0.01% 0
UDP(53) 0.05% 0.26% 0.10% < 0.01% 0.02% 5.30% 2.54% 0.13% 1.03% 0.57% 1.56%
ALL⧵ICMPv6a 3.28% 2.96% 1.43% 0.06% 0.40% 5.65% 5.46% 1.55% 2.80% 1.48% 3.24%

aTCP(20) ∪ TCP(22) ∪ TCP(80,443) ∪ UDP(25) ∪ UDP(53) ⧵ ICMPv6.
Table 7
The response rates on seed sets 𝐶𝑖 , 𝑖 ∈ [1, 11] using different protocols.
Protocols (Ports) 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝐶7 𝐶8 𝐶9 𝐶10 𝐶11

ICMPv6 72.72% 73.26% 73.11% 89.04% 84.50% 74.08% 65.26% 74.98% 63.54% 64.08% 62.40%
TCP(21) 14.26% 14.37% 13.67% 0 0.13% 1.04% 5.17% 20.58% 2.02% 2.18% 2.13%
TCP(22) 18.98% 19.48% 19.60% 0.48% 3.01% 9.70% 17.42% 16.63% 6.64% 7.71% 7.82%
TCP(80,443) 28.98% 30.18% 30.00% 0 0.36% 15.86% 19.47% 36.99% 10.45% 10.85% 10.57%
UDP(25) 0 0 0 0 0 0 < 0.01% 0 0 < 0.01% 0
UDP(53) 4.46% 4.67% 4.53% 0 0.14% 5.16% 4.05% 4.19% 3.88% 3.43% 3.52%
a novel graph-theoretic pattern mining algorithm to automatically find
the address patterns and filter out the ‘‘outlier’’ seeds, which results in
fine-grained and reasonable space partition and effectively reduces the
size of the scanning space. This unique feature solves the ‘‘black sheep’’
(outlier seeds) problem and low hit rate challenges caused by the space
partition based on only one single split indicator. With the real-world
test, 6Graph has achieved much better performance on hit rate than the
11

state-of-the-art solutions, 6Hit and 6Tree, 6Gen, and Entropy/IP.
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